

Research Seminar Series

Dr. Haoxiang Li

Oak Ridge National Laboratory

Tuesday, February 1, 2022 10:00 AM CST

Register for Zoom here

Unconventional charge density wave in kagome superconductor AV₃Sb₅ (A=K, Cs, Rb)

The combination of nontrivial band topology and symmetry-breaking phases gives rise to novel quantum states and phenomena such as topological superconductivity, quantum anomalous Hall effect, and axion electrodynamics. The charge density wave (CDW), a translational symmetry breaking fluid, plays a crucial role in unconventional superconductors and intertwined electronic orders. While CDWs have been isolated from topological excitations, recently experimental evidence of a topological CDW with chiral flux phase has been observed in a new kagome metal AV_3Sb_5 (A=K, Rb, Cs) [1,2]. The formation of this CDW state breaks the time-reversal symmetry and is possibly responsible for the novel superconductivity with roton pair density wave [3] and electronic nematicity [4]. In this talk, I will present our experimental work on the CDW state in AV_3Sb_5 combining result from inelastic and elastic X-ray scattering and angle-resolved photoemission spectroscopy (ARPES) [5,6]. Our result demonstrates an unusual 3D-CDW consisting of two intertwined charge orders with the absence of acoustic phonon anomalies that firmly exclude electron-phonon coupling. This result points to an electronically driven CDW of chiral flux phase [2] that arise from the sublattice interference with the electronic filling close to the van Hove singularity.

- 1. Nat. Mater. **20**, 1353–1357 (2021)
- 2. Phys. Rev. Lett. 127, 217601(2021)
- 3. *Nature* **599**, 222–228 (2021).
- 4. Nature **599**, 216–221 (2021).
- 5. Phys. Rev. X 11, 031050 (2021).
- 6. arXiv:2109.03418 (2021)

Biography: Haoxiang Li, Ph.D., is currently a postdoctoral researcher at Oak Ridge National Laboratory. He received his Ph.D. degree from the University of Colorado Boulder. His research work focuses on probing quantum many-body states that emerge from charge, spin, and lattice interactions using various X-ray scattering techniques and angle-resolved photoemission spectroscopy. His current research interest focused on the intersection of strong correlation and non-trivial band topology, such as topological flat band state in frustrated lattice systems, spin-lattice interactions in quantum spin liquid materials and the intertwine orders in novel kagome lattice systems.

For more information see our website at https://acme.ua.edu

Receive links to our future ACME Materials Seminar Series: https://acme.ua.edu/register-for-seminars.html